
1. Introduction
Satellite-based altimeters have been measuring sea surface height (SSH) with routine near-global coverage since 
the early 1990s (Chelton et  al.,  2001). In addition to providing critical information about regional sea level 
variability on sub-monthly to decadal timescales (Chelton & Schlax,  1996), as well as long-term global sea 

Abstract Satellite altimetry measurements of sea surface height provide near-global ocean state 
observations on sub-monthly time scales, which are not always utilized by seasonal climate forecasting systems. 
As early as the mid-1990s, attempts were made to assimilate altimetry observations to initialize climate models. 
These experiments demonstrated improved ocean forecasting skill, especially compared to experiments that 
did not assimilate subsurface ocean temperature information. Nowadays, some operational climate forecasting 
models utilize altimetry in their assimilation systems, whereas others do not. Here, we assess the impact of 
altimetry assimilation on seasonal prediction skill of ocean variables in two climate forecasting systems that 
are from the European Centre for Medium-Range Weather Forecasts (SEAS5) and the Australian Bureau of 
Meteorology (ACCESS-S). We show that assimilating altimetry improves the initialization of subsurface ocean 
temperatures, as well as seasonal forecasts of monthly variability in upper-ocean heat content and sea level. 
Skill improvements are largest in the subtropics, where there are typically less subsurface ocean observations 
available to initialize the forecasts. In the tropics, there are no noticeable improvements in forecast skill. The 
positive impact of altimetry assimilation on forecast skill related to the subsurface ocean does not seem to 
affect predictions of sea surface temperature. Whether this is because current forecasting systems are close to 
the potential predictability limit for the ocean surface, or perhaps altimetry observations are not fully exploited, 
remains a question. In summary, we find that utilizing altimetry observations improves the overall global ocean 
forecasting skill, at least for upper-ocean heat content and sea level.

Plain Language Summary Sea surface heights have been nearly continuously and globally 
measured by satellite-based altimeters for almost 30 years, yet not all climate models utilize these observations 
during their initialization phases of seasonal forecasting. Since the local sea surface height (SSH), or sea 
level, is mostly determined by the ocean temperature and salinity-controlled subsurface density structure, 
the altimetry measurements contain a vast amount of integrated information about the ocean climate state. 
Climate forecasting systems are usually most skillful when they start from the most accurate initial conditions, 
including the state of the ocean density structure. Unfortunately, temperature and salinity observations are 
sparse in many parts of the world's oceans, which degrades the initialization of models and thus possibly 
diminishes forecast skill. Here, we quantify the benefits of using altimetry observations to initialize two 
state-of-the-art climate forecasting systems by verifying seasonal forecasts using observational products of 
upper-ocean temperature, sea surface temperature, and SSH. In the experiments that did not use altimetry data 
assimilation, we find an overall decrease of seasonal forecasting skill for the subsurface temperature and SSH, 
which is especially pronounced in the global subtropics, although we find no widespread change in skill for sea 
surface temperature. Thus, for predicting the subsurface ocean, climate forecasting systems may benefit from 
incorporating altimetry data assimilation into their ocean initial conditions. More work is needed to assess how 
much of the subsurface skill improvements can potentially affect the surface ocean.

WIDLANSKY ET AL.

© 2023. American Geophysical Union. 
All Rights Reserved.

Quantifying the Benefits of Altimetry Assimilation in Seasonal 
Forecasts of the Upper Ocean
Matthew J. Widlansky1  , Xiaoyu Long2,3  , Magdalena A. Balmaseda4  , Claire M. Spillman5  , 
Grant Smith5  , Hao Zuo4  , Yonghong Yin5, Oscar Alves5, and Arun Kumar6 

1School of Ocean and Earth Science and Technology, Cooperative Institute for Marine and Atmospheric Research, University 
of Hawai'i at Mānoa, Honolulu, HI, USA, 2Cooperative Institute for Research in Environmental Sciences, University of 
Colorado Boulder, Boulder, CO, USA, 3NOAA Physical Sciences Laboratory, Boulder, CO, USA, 4European Centre for 
Medium-Range Weather Forecasts, Reading, UK, 5Bureau of Meteorology, Melbourne, VIC, Australia, 6Climate Prediction 
Center, NCEP/NWS/NOAA, College Park, MD, USA

Key Points:
•  Assimilating observations of sea 

surface height improves initialization 
of subsurface ocean temperatures in 
climate forecasting systems

•  By including altimetry assimilation, 
monthly forecasts are improved of 
upper-ocean heat content and sea level

•  Sea surface temperature is only 
minimally affected by altimetry 
assimilation, at least in the seasonal 
forecasts assessed here

Correspondence to:
M. J. Widlansky,
mwidlans@hawaii.edu

Citation:
Widlansky, M. J., Long, X., Balmaseda, 
M. A., Spillman, C. M., Smith, G., 
Zuo, H., et al. (2023). Quantifying the 
benefits of altimetry assimilation in 
seasonal forecasts of the upper ocean. 
Journal of Geophysical Research: 
Oceans, 128, e2022JC019342. https://doi.
org/10.1029/2022JC019342

Received 28 SEP 2022
Accepted 18 APR 2023

10.1029/2022JC019342
RESEARCH ARTICLE

1 of 25

https://orcid.org/0000-0002-3765-7327
https://orcid.org/0000-0001-8646-4997
https://orcid.org/0000-0002-9611-8788
https://orcid.org/0000-0003-0853-8190
https://orcid.org/0000-0003-4692-6565
https://orcid.org/0000-0003-0860-5832
https://orcid.org/0000-0003-2657-2755
https://doi.org/10.1029/2022JC019342
https://doi.org/10.1029/2022JC019342


Journal of Geophysical Research: Oceans

WIDLANSKY ET AL.

10.1029/2022JC019342

2 of 25

level rise (Nerem et al., 2018), altimetry observations have been used to describe the ocean circulation (L. Fu & 
Smith, 1996) and subsurface density structure (Feng & Zhong, 2015; García et al., 2007). Since the local SSH 
is mostly determined by the integrated effect of underlying temperature anomalies on seawater density in many 
locations (e.g., Widlansky et  al.,  2020), satellite-derived observations of SSH provide information about the 
subsurface ocean that may be otherwise unknown. Use of altimetry information about the subsurface ocean can 
provide an opportunity to improve the ocean-state description (Webb & Moore, 1986), which may be especially 
useful for the initialization of seasonal climate forecasts.

Since the operational use of coupled ocean-atmosphere models to predict seasonal changes in the climate (e.g., 
Anderson, 2012; Stockdale, 1997; Stockdale et al., 1998), their forecast skill has been shown to depend at least 
in part on accurately initializing the ocean physical state (Palmer & Anderson, 1994). Ocean physics can be fully 
described by the combined observation of seawater temperature and salinity, as well as the zonal and meridional 
circulation (respectively, abbreviated T, S, U, and V), and the associated SSH. Observations of T, S, U, and V are 
extensive in many parts of the world's oceans, especially since the global network of Argo floats and profilers 
began in 2002 (Feder, 2000). Mooring networks have provided comprehensive oceanic observations for a much 
longer period in some places, such as the TAO/TRITON array in the equatorial Pacific where the subsurface T 
data (Hayes et al., 1991) was used to improve understanding of the El Niño-Southern Oscillation (ENSO) and 
advance forecasting systems (e.g., Stockdale et al., 1998; Vidard et al., 2007). Elsewhere, however, subsurface 
ocean observations are typically more limited.

To supplement the in-situ observation network (e.g., floats, moorings, and profilers), and provide climate models 
with additional information about the ocean physical state, altimetry observations of SSH are assimilated into 
several climate reanalysis products. Examples include the Ocean Reanalysis System 5 (ORAS5; Zuo et al., 2019) 
from the European Centre for Medium Range Weather Forecasts (ECMWF) as well as each of the other models 
contributing to the Global Reanalysis Ensemble Product (GREP; Storto, Masina, et al., 2019) from the European 
Copernicus Marine Environment Monitoring Service (CMEMS). Altimetry assimilation follows different meth-
odologies in the different systems, but most of them try to project the SSH information onto the vertical density 
structure of the ocean (Alves et  al., 2001; Vidard et  al., 2009). For instance, in the ORAS5, the relationship 
between SSH and subsurface density variations (T and S) uses the linearized version of the buoyancy frequency 
(Balmaseda et al., 2013). Hence, the SSH increment affects each of the ocean state variables in the model, with 
the subsurface T profile usually influenced the most by the assimilation of altimetry due to the strong dependence 
of the ocean temperature on the density and, consequently, on sea level variability (e.g., Widlansky et al., 2020).

There are also examples of climate forecasting systems that include altimetry observations in their ocean initial-
izations (e.g., Balmaseda, 2017), which is usually accomplished similarly to the procedure used by the climate 
reanalysis products. The first successful use of altimetry to improve the initialization of a climate forecasting 
model was shown by Segschneider et al. (2000). However, it took several years for these early attempts to be 
transferred to operations (Balmaseda et al., 2008). Later, Balmaseda and Anderson (2009) showed that the assim-
ilation of altimetry improved the seasonal forecasts of sea surface temperature (SST), primarily by correcting 
the ocean mean state in the initial conditions, which was worse than now. Present-day examples include the 
operational climate forecast model from ECMWF (i.e., SEAS5; S. J. Johnson et al., 2019) as well as the previous 
operational forecast system from the Australian Bureau of Meteorology (i.e., EESS-S1; Hudson et al., 2017); 
both of which assimilate the Global Ocean Along Track SSH product from CMEMS (i.e., altimetry with Level 
3 processing). The current operational version of ACCESS-S (i.e., -S2; Wedd et  al.,  2022) does not include 
altimetry assimilation, which provides a convenient opportunity for comparing what are otherwise mostly similar 
forecasting systems.

Despite these earlier studies demonstrating the feasibility of using altimetry assimilation to improve climate 
forecasting models, and the later incorporation of the procedure into some operational frameworks, the impact of 
altimetry on seasonal forecasting skill has not been quantified in current-generation systems. Furthermore, many 
climate models used currently for seasonal forecasting do not include altimetry assimilation, such as NOAA's 
CFSv2 or any of the other models participating in the North American Multi-Model Ensemble (NMME; Kirtman 
et al., 2014). Recently, some of the above-mentioned models (i.e., SEAS5, ACCESS-S1, CFSv2, and five other 
models from the NMME) were assessed together for their seasonal forecasting skill of monthly sea level anom-
alies (Long et  al.,  2021). In general, the models that did assimilate altimetry (i.e., SEAS5 and ACCESS-S1) 
had higher skill compared to the other models. However, in addition to the inclusion of altimetry or not in the 



Journal of Geophysical Research: Oceans

WIDLANSKY ET AL.

10.1029/2022JC019342

3 of 25

forecasting models, there were other important variations among the models (especially their horizontal resolu-
tions of the ocean) that made it impossible for Long et al. (2021) to determine the exact cause of skill differences.

Here, we will use a dedicated experiment with altimetry assimilation turned off in the SEAS5 initialization 
to quantify the impact of that modification on ocean seasonal forecasting skill. We will also utilize the recent 
change from ACCESS-S1 to ACCESS-S2 to make a similar comparison, since only the former version includes 
altimetry assimilation. However, we note that the latter comparison is imperfect because a new data assimila-
tion system was implemented for ACCESS-S2, which was developed in-house at the Bureau of Meteorology 
(Wedd et al., 2022), in addition to other mostly minor changes. Using the first comparison, we will isolate the 
role of altimetry assim ilation on ocean forecasting skill in the SEAS5 model and, likewise, the comparison of 
ACCESS-S models will provide further validation in an additional operational forecasting system. All of the fore-
casting systems are fairly comparable in modeling design (Hudson et al., 2017; S. J. Johnson et al., 2019; Wedd 
et al., 2022), with each using the same ocean model (Nucleus for European Modeling of the Ocean; NEMO; 
Gurvan et al., 2022) ran at a nominal 0.25° eddy-permitting horizontal resolution that is assimilated using mostly 
similar ocean observations (except of course for whether or not altimetry is included), which makes feasible the 
comparisons presented here.

Our hypothesis consists of two parts, which are primarily based on the results of the Segschneider et al. (2000) 
as well as Palmer and Anderson (1994) studies mentioned above. First, we expect that the altimetry assimilation 
included in SEAS5 (i.e., the Control setup), as well as ACCESS-S1, improves the initialization of the ocean 
subsurface density structure. Hence, we expect these assimilation systems to have a more accurate SSH state 
estimation (mostly via a thermosteric sea level response), compared to the systems with no altimetry assimilation 
(i.e., the SEAS5-Experiment or ACCESS-S2). Second, we anticipate that models with improved ocean state esti-
mation (i.e., the SEAS5-Control or ACCESS-S1) will have higher forecast skill at the monthly-to-seasonal leads, 
compared to the systems lacking altimetry assimilation. However, if the altimetry assimilation does not in fact 
improve the initial ocean density structure (e.g., if temperatures are nudged in the models at the wrong vertical 
levels), then we hypothesize that ocean forecasts using such methods are either not improved or possibly made 
worse. We also do not expect altimetry assimilation to have a large effect on SST for several reasons: (a) SST 
is already well observed (primarily by other satellite instruments) and assimilated into the models with fidelity; 
(b) there is a multitude of processes affecting SST forecasts (e.g., air-sea interactions) beyond the quality of the 
ocean initial conditions; and, (c) the mean state of the upper-ocean temperature is now better constrained even in 
the absence of altimetry observations thanks to improvements in the in-situ observing system and data assimila-
tion algorithms (M. A. Balmaseda & Anderson, 2009), especially in the equatorial Pacific where SST seasonal 
variability is large. The latter reasoning also suggests a geographical dependence (i.e., outside of the equatorial 
Pacific) on the usefulness of altimetry assimilation with regards to improving forecasts of other variables related 
to upper-ocean temperatures.

By assessing the retrospective forecasts from the Control and Experiment setups of the SEAS5 model, and likewise 
comparing ACCESS-S1 with ACCESS-S2, we will determine whether the assimilation of altimetry-measured 
SSH improves the forecasts of SSH and upper-300 m ocean heat content (OHC-300), since these variables capture 
the potential impact of ocean subsurface physics (e.g., dynamical and thermal memory; Bulgin et al., 2020; Shi 
et al., 2022). Furthermore, both SSH and OHC-300 are of interest on their own for forecasting applications, such 
as concerning sea level coastal impacts (Dusek et al., 2022; Stephens et al., 2014) and the effects of marine heat-
waves on ecosystems (Behrens et al., 2019; C. M. Spillman & Smith, 2021). We will also analyze the forecasts of 
SST, which we will use to compare the effects of altimetry assimilation at the ocean surface versus the subsurface 
characteristics represented by OHC-300 and SSH.

The remainder of the paper is organized as follows. In the next section, the data and methods are described with 
attention to the choice of verification data as well as the experimental setup. Forecast assessment results are then 
presented in Section 3. A summary of the study is provided in the final section, followed by discussion to interpret 
the results and consider opportunities for improving future seasonal climate forecasting systems.

2. Data and Methods
We describe the seasonal variability of upper-ocean physics using monthly anomalies of three variables: OHC-300, 
SST, and SSH. For each variable, we choose an observational product and then compare it to the equivalent 
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forecast model output. We quantify the observation-to-model comparison using temporal anomaly correlation 
coefficients (ACC) and root-mean square error (RMSE), which we calculate by first removing the monthly clima-
tology from the respective data sets and then determining either the correlations or errors between the remaining 
anomalies. The assessment epoch was chosen to maximize the amount of retrospective data available since the 
altimetry era began (1993–2014 for SEAS5 and 1993–2012 for ACCESS-S), and we consider together only the 
May and November forecast starts because those are the only forecasts available for the SEAS5-Experiment (no 
altimetry assimilated). Finally, we assess the effect of altimetry assimilation on the forecast skill (i.e., ACC and 
RMSE at a particular lead time from 0 to 5 months) by subtracting results for the forecasts with no altimetry 
assimilation (i.e., the experiment) from the control results. We perform all of the assessments for the global oceans 
that are generally ice free (60°S–60°N), using data regridded to a uniform 1° × 1° latitude-longitude resolution 
(i.e., 43,200 grid points). For each ACC and RMSE map throughout, the global-average of values between 60°S 
and 60°N is indicated in the respective panel title (spatial data is weighted by grid-cell area prior to averaging; i.e., 
by multiplying the gridded data by the cosine of its central latitude). Thus, we quantify both where and by how 
much the use of altimetry assimilation affects the seasonal forecast skill of the upper-ocean monthly variability.

We first show that OHC-300 and SSH are expected to be strongly correlated nearly everywhere. We see this strong 
correlation in the NEMO ocean model forced by the atmospheric fluxes from ERA-Interim (Dee et al., 2011) but 
with no data assimilation in the ocean except for strong nudging to the observed SST (Figure 1a). For reference, 
the NEMO configuration used in both SEAS5 and ACCESS-S has been shown to produce a realistic representa-
tion of observed ocean physics (e.g., Zuo et al., 2017).

The correlation between OHC-300 and SSH in the NEMO model (Figure 1a) is not surprising since large-scale 
sea level variability has been shown to be linked to the thermocline variability and thus the amount of heat 
and relative buoyancy of the upper ocean, especially in the tropical Pacific (Long et al., 2020; Timmermann 
et al., 2010). Besides some regions poleward of 60°N/S with weak or negative correlations, which are outside 
of the ice-free domain that we will assess forecast skill, the only areas of negative ACC between OHC-300 and 
SSH are confined to parts of the mid-latitudes (e.g., in parts of the North Atlantic Ocean, Sea of Okhotsk in the 
northwestern Pacific Ocean, and the Southern Ocean near Africa) as well as in the equatorial Atlantic. Sea level 
variability is relatively small in the latter region, especially compared to most of the equatorial Pacific and Indian 
Oceans (Long et al., 2021). The equatorial Atlantic SSH also may be more influenced by salinity than tempera-
ture, which is unusual compared to most of the global oceans (Widlansky et al., 2020). There are multiple reports 
of wind-forced barotropic processes affecting regional sea levels as well (L. L. Fu & Davidson, 1995; Fukumori 
et al., 1998; Hughes et al., 2018; Wunsch, 1991), which may explain other areas equatorward of 60°N/S with rela-
tively weak correlations between OHC-300 and SSH (e.g., along the U.S. East Coast and in parts of the tropical 
Indian Ocean; see respectively, Piecuch et al., 2016; Rohith et al., 2019).

Global OHC-300 data must be either interpolated from heterogeneous subsurface observations or inferred by 
other means. Thus, the question of how to verify OHC-300 forecasts is not trivial since the choice of observa-
tional product is likely to affect the assessment. Examples of interpolated data sets are in-situ based objective 
analyses using primarily Argo data such as the Met Office Hadley Centre EN4 and Institute of Atmospheric Phys-
ics (IAP) products, which are respectively described by Good et al. (2013) and Cheng et al. (2017). An alternative 
approach uses the dynamics inherent with climate reanalysis products (such as GREP) to simulate the OHC-300 
variability. This is in contrast with the SST and SSH variables, which are readily studied using globally-gridded 
data sets that are produced almost entirely from satellite measurements. Here, we use the NOAA Optimum 
Interpolated (OI) SST V2 and the SSALTO/DUACS multi-mission altimetry data set distributed by the CMEMS 
(i.e., the Level 4 processing of altimetry), which are respectively described by Reynolds et al. (2002) and Long 
et al. (2021). Since none of the models include atmospheric pressure forcing on the sea level, we use the standard 
SSH product from CMEMS that includes a dynamic atmospheric correction to remove the inverse-barometer 
effect from the altimetry measurements.

We considered that the SEAS5 forecasts verified using the ORAS5 reanalysis might appear to have higher skill, 
compared to if a more independent observational product was used for the verification. To assist selection of the 
OHC-300 verification product, we compared the ACC between observed SSH and the OHC-300 from either a 
multi-model reanalysis (GREP; Figure 1b), single-model reanalysis (ORAS5; Figure 1c), or two different objec-
tive analyses (IAP and EN4; Figures 1e and 1g). We note that GREP and ORAS5 are both forced by ERA-Interim 
atmospheric fluxes (similar to the NEMO experiment; Figure 1a), although different bulk formulas and data 
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Figure 1. Comparison of the ACC between SSH and OHC-300 in a climate model, reanalysis products, and objective analysis products. The OHC-300 is from 
either the (a) ocean model (NEMO), (b) multi-model mean reanalysis (GREP), (c) single-model reanalysis (ORAS5) or, (e and g) objective analyses of in-situ ocean 
temperature observations (IAP and EN4, respectively). The SSH is from either the (a) climate model or, otherwise altimetry observations. (d, f, and h) Differences in 
ACC between products compared to the multi-model reanalysis (GREP minus ORAS5, GREP minus IAP, and GREP minus EN4, respectively). Global averages of the 
ACC maps (60°N/S domain) are indicated in parentheses throughout.
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assimilation schemes are used across the systems. The multi-model reanalysis result most closely resembles 
the expected strong correlation between SSH and OHC-300, as inferred from the independent model result 
(Figure 1a). Furthermore, the ACC using GREP was higher than any of the other products (Figures 1c, 1e and 1f), 
especially outside of the tropics. Interestingly, there are almost no differences in the equatorial Pacific. Consid-
ering the overall stronger ACC between observed SSH and the OHC-300 from GREP, we chose this product for 
verifying the OHC-300 forecasts.

OHC-300 is also positively correlated with SST in many places, both in the NEMO model and observations 
(Figure 2). We remind that the SST in this particular NEMO simulation is strongly nudged to observations, which 
is applied using a surface non-solar heat flux computed with a constant restoration factor (−200 W/m 2/K −1) 
times the difference between the model background SST and observed SST (Zuo et al., 2019), so the model is not 
completely representative of independent ocean physics. The relationship between the upper-ocean and surface 
temperatures is often reported in climate assessments (e.g., G. C. Johnson et al., 2021), although the OHC-300 
correlation with SST is not as strong as we saw with SSH. Together, the correlations between OHC-300 and either 
SSH (Figure 1) or SST (Figure 2) demonstrate the strong relationship between the three ocean variables consid-
ered here. Furthermore, McAdam et al. (2022) showed that in SEAS5 the seasonal forecasting skill for OHC-300 
is similar to SST in most places, which they interpreted as suggesting that dynamical climate forecasting systems 
benefit from the thermo-dynamical memory in the ocean initial conditions.

We assess the monthly anomalies of OHC-300, SST, and SSH from climate forecasting systems, and focus on 
the forecasts for lead-0 and lead-3 months. The former lead time is representative of the initial conditions after 
the data assimilation, and the latter represents the outlook at the beginning of the next season. Differences of the 
results between each of the leads that are available for all of the forecasting systems (i.e., out to lead-5 months) 
are discussed in the final section.

We calculate the forecast monthly anomalies following the methodology in Long et al. (2021), which is namely 
to remove both the lead-time dependent climatology as well as any remaining long-term trends in each of the 
variables. Removal of the trend from the forecasts and observations is especially important for consideration of 
SSH because global sea level rise is treated differently among the models (see Long et al., 2021). Also, substan-
tial trend errors exist in the models for SST (e.g., in the tropical Pacific; L'Heureux et al., 2022). Furthermore, 
removing the trends is necessary to assess correlations between variables, which we do for OHC-300 and SSH 
(Figures 1 and 3) as well as SST (Figure 2).

Here, we measure forecast skill using the ACC and RMSE metrics of how well the predictions compare to 
the respective verification products (i.e., OHC-300 from the GREP multi-model reanalysis, as well as 
satellite-observed SST and SSH). ACC measures the association between the model forecast and observed varia-
bility, whereas RMSE measures the accuracy or amplitude errors of the forecast (Wilks, 2011). Our methodology 
for quantifying the role of altimetry assimilation in forecast skill consists of simply comparing the ACC and 
RMSE from retrospective forecasts (i.e., hindcasts) that were made either with or without altimetry assimilation. 

Figure 2. The ACC between SST and OHC-300. (a) Data is from the ocean model (NEMO). (b) Data is from observations (NOAA OI) or the multi-model reanalysis 
(GREP) for SST or OHC-300, respectively.
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As mentioned in the introduction, the control forecasts are from SEAS5 and ACCESS-S1, as altimetry assim-
ilation is included in both systems. The experiment forecasts (i.e., without altimetry assimilation) are from a 
dedicated set of retrospective forecasts (i.e., SEAS5-Experiment) and ACCESS-S2. For each of the models, we 
use the average of available ensemble members (14 for both configurations of SEAS5, 11 for ACCESS-S1, and 
12 for ACCESS-S2). Throughout, we only directly calculate the forecast skill differences between similar models 
(i.e., SEAS5-Control vs. SEAS5-Experiment and ACCESS-S1 vs. ACCESS-S2).

We calculate statistical significance of the individual ACC values using a two-tailed t-test (0.05 confidence 
level) against a null hypothesis of zero correlation, and with the degrees of freedom determined by the observed 
autocorrelation decay timescale at each location (see Long et al., 2021). For the combined two forecast starts 
per year, most locations have about 40 degrees of freedom in both the control and experiment forecasts, with the 
SEAS5 forecasts having slightly more degrees of freedom overall compared to ACCESS-S because of the longer 
epoch of retrospective forecasts (i.e., 22 vs. 20 years). Despite the rather limited sample sizes, we attempt to test 
the significance of the forecast skill differences (i.e., the control minus experiment), which was not done in Long 
et al. (2021). We use a similar two-tailed t-test applied to the difference of Fisher Z-transforms of the ACC values, 
and that accounts for correlation typically existing between the forecasts being compared (Meng et al., 1992).

3. Results
3.1. Effect of Altimetry Assimilation on the Forecast Initialization

Assessment of the two forecast systems (i.e., SEAS5 and ACCESS-S) during the lead-0 month shows mostly 
positive ACC values between observed SSH (i.e., from satellite altimetry) and predicted OHC-300 (Figure 3), 

Figure 3. The ACC between observations of SSH (from altimetry) and forecasts of OHC-300 (from the lead-0 month). (a and b) Forecasts with altimetry assimilation 
(SEAS5-Control and ACCESS-S1, respectively). (c) and (d) Forecasts with no altimetry assimilation (SEAS5-Experiment and ACCESS-S2, respectively). Hatching 
indicates non-significant ACC values. (e and f) Differences between the forecasts with and without altimetry assimilation. Stippling indicates significant ACC 
differences.
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regardless of whether altimetry assimilation is included in the models. All of the forecasts at lead-0 month have 
ACC characteristics that resemble the single-model reanalysis result (ORAS5; Figure 1c), which suggests that 
this lead time is within the influence of skill due to the initialization. We consider the lead-0 month forecasts to 
be mostly representative of each model's conditions around the time of initialization (i.e., the lead-0 month is used 
as a proxy reanalysis). Interestingly, neither the control forecasts (i.e., with altimetry assimilation; Figures 3a 
and 3b) or experiment forecasts (i.e., without altimetry assimilation; Figures 3c and 3d) have as strong correla-
tions as we saw in either the uninitialized ocean model (NEMO; Figure 1a) or the multi-model reanalysis (GREP; 
Figure 1b), although ACCESS-S1 clearly has the strongest ACC of the forecast models. In general, we see that all 
of the forecast models at least begin with an expected pattern of correlation between observed SSH and simulated 
OHC-300 (i.e., higher ACC in the tropics compared to the mid-latitudes; see Figure 1a).

In the forecast models with no altimetry assimilation (Figures 3c and 3d), the ACC between observed SSH and 
OHC-300 at the lead-0 month is somewhat reduced compared to the control forecasts (Figures 3a and 3b). In 
both SEAS5 and ACCESS-S, altimetry assimilation has a much larger effect on the lead-0 month forecast outside 
of the tropics (i.e., typically poleward of about 15°N/S). In the subtropics, especially, the ACC differences asso-
ciated with using altimetry assimilation are generally positive and are likely to be significant at many specific 
locations (Figures 3e and 3f; stippling). Conversely, in much of the tropics and especially the equatorial Pacific, 
altimetry assimilation has almost no effect (as assessed by the ACC metric).

Comparing the reduction of ACC values in the SEAS5-Experiment and ACCESS-S2 (i.e., the forecast models 
with no altimetry assimilation; Figures 3e and 3f), the differences are usually larger in the latter model. For almost 
everywhere that altimetry assimilation seems to impact the ACC metric in the SEAS5-Experiment, ACCESS-S2 
shows a larger sensitivity (i.e., reduced correlations in the lead-0 month forecasts compared to ACCESS-S1). 
However, there is an exception near the equator (especially in the Atlantic Ocean) where ACC values are mostly 
larger in ACCESS-S2, as indicated by the blue shading in Figure 3f. We briefly note here that some of the differ-
ences comparing ACCESS-S1 and ACCESS-S2 may be related to other changes in the forecast system besides 
whether or not altimetry assimilation was included (Wedd et al., 2022), which applies to all such assessments (see 
also the discussion in Section 4).

3.2. Forecast Skill Assessment

We now consider the effect of altimetry assimilation on forecast skill as quantified by the ACC and RMSE 
between the predicted and observed ocean variables (i.e., OHC-300, SST, and SSH). For each variable, we will 
assess the forecast at lead-0 and lead-3 months. As done previously, we will present the ACC (as well as RMSE) 
values for both the models that either used altimetry assimilation or did not (i.e., the control and experiment fore-
casts, respectively), followed by the respective differences (i.e., the control minus experiment).

3.2.1. OHC-300

Beginning with the assessment of OHC-300, which is an indicator of a model's ability to predict the upper-ocean 
thermodynamic conditions as well as dynamical processes such as thermocline variability, we see evidence of 
skillful seasonal forecasts in much of the global ocean for all of the models (Figures 4 and 5). For the lead-0 month 
forecast, regardless of whether or not the models used altimetry assimilation, ACC values in most places are 
significantly different from random correlations (i.e., not hatched in Figures 4a–4d) and the RMSE values are 
mostly small compared to the observed standard deviations (Figures 5a–5d). The skillful forecasts for most places 
continue to the lead-3 month (Figures 4g–4j and 5g–j), although the ACC values are clearly diminished nearly 
everywhere and the RMSE values are higher compared to at the lead-0 month.

The forecast skill at lead-0 and 3 months tends to be better for the SEAS5 models (i.e., higher ACC and lower 
RMSE) compared to the ACCESS-S models, again regardless of the use of altimetry assimilation. We note that 
the OHC-300 verification data set is from the multi-model reanalysis (GREP) that includes ORAS5, which is 
also very similar to the SEAS5-Control at the lead-0 month. This choice of verification data may explain some 
of the ACC differences between the SEAS5 and ACCESS-S models. Thus the focus of assessing forecast skill 
differences should mostly be directed to considering the SEAS5 and ACCESS-S models separately.

We quantify the effect of altimetry assimilation on forecast skill, independent of any differences between SEAS5 
and the ACCESS-S systems, using row-wise differences of the results in Figures 4 and 5. The assessment reveals 
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Figure 4. OHC-300 forecast skill measured by the ACC between GREP reanalysis OHC-300 (proxy for observations) and forecast OHC-300 at lead-0 and 3 months 
(a–d and g–j, respectively). Hatching indicates non-significant ACC values for each of SEAS5-Control, ACCESS-S1, SEAS5-Experiment, and ACCESS-S2. e–f and 
k–l) Differences between the forecasts with and without altimetry assimilation. Stippling indicates significant ACC differences.
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Figure 5. OHC-300 forecast skill measured by the RMSE between GREP reanalysis OHC-300 (proxy for observations) and forecast OHC-300 at lead-0 and 3 months 
(a–d and g–j, respectively). Black contours indicate the observed standard deviation of OHC-300 (0.5 × 10 9 J interval). (e–f and k–l) Differences between the forecasts 
with and without altimetry assimilation.
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that the models including altimetry assimilation (i.e., SEAS5-Control and ACCESS-S1) have better forecast skill 
overall, compared to the corresponding model not using altimetry assimilation (i.e., SEAS5-Experiment and 
ACCESS-S2). At the lead-0 month, the patterns and amplitudes of the ACC differences for OHC-300 forecast 
skill (Figures 4e and 4f) closely resemble the previously noted ACC differences between observed SSH and the 
same OHC-300 model data (Figures 3g and 3h). In particular, the improved OHC-300 forecast using altimetry 
assimilation is most noticeable in the subtropics. At lead-0  month, there are few places where either model 
without altimetry assimilation has the higher forecast skill (i.e., blue shading is limited in Figures 4e and 4f). 
The difference between the two ACCESS-S models is noticeably larger than in the SEAS5 experiment, which 
suggests that altimetry assimilation may have a larger effect on the ocean in ACCESS-S1, at least relative to the 
influence from assimilation of in-situ observations (e.g., of subsurface temperature). However, there are some 
places where the ACCESS-S2 model has higher ACC values than ACCESS-S1, most noticeably in the equatorial 
regions. The RMSE results closely mirror the ACC assessment with few exceptions during the lead-0 month 
(Figures 5a–5f). Including altimetry assimilation does seem to improve the ACC and RMSE values overall for 
both SEAS5 and ACCESS-S1 at the lead-0 month, but it is clearly not a guarantee of improved forecasting ability 
everywhere, especially in the latter model.

The overall improved OHC-300 forecast skill in the models using altimetry assimilation mostly continues to the 
3-month lead, although the improvement (i.e., positive ACC differences; negative RMSE differences) tends to 
become smaller at longer leads (Figures 4k and 4l, versus Figures 4e and 4f; Figures 5k and 5l, versus Figures 5e 
and 5f). As we expect that forecast skill usually decreases with increasing lead time, regardless of model or the 
initialization, it is not surprising that the ACC differences become smaller at the longer lead. The fact that there 
are any significant positive ACC differences at lead-3 month supports the hypothesis that altimetry assimilation 
improves the seasonal forecast skill related to OHC-300. The SEAS5 experiment difference is conclusive in 
support for this hypothesis, since altimetry assimilation was the only altered parameter in that model. Whereas 
the ACCESS-S1 minus ACCESS-S2 result can only be considered suggestive of the same, as there are other 
differences between these two models besides altimetry assimilation. Interestingly, the improved lead-3 month 
forecast skill of OHC-300 appears more uniform in the SEAS5 model using altimetry assimilation, compared to 
in ACCESS-S1 (e.g., see the slightly lower ACC in some equatorial regions and parts of the North Atlantic, as 
well as the overall more heterogeneous ACC differences; Figure 4l), which is unlike the lead-0 month differences 
that were less robust in the SEAS5 experiment. The only place where the SEAS5-Control and ACCESS-S1 both 
have a lower ACC during the lead-3 month (Figures 4k and 4l) is in a narrow region of the equatorial Atlantic that 
extends into the subtropics along the southwestern African Coast (see discussion in Section 4). The RMSE result 
at the 3-month lead (Figures 5g–5l) again mostly mirrors the ACC assessment, except that ACCESS-S1 appears 
to perform worse than ACCESS-S2 in each of the equatorial ocean regions, as well as the Southern Ocean, which 
contributes to the overall higher RMSE in the former model.

3.2.2. SST

Whether or not altimetry assimilation is used appears to have almost no effect on the SST forecast skill at the 
lead-0 month (Figures 6a–6f and 7a–7f). This is not a surprising result because the SST in the initial analysis is 
strongly nudged to independent SST observations. In the ACCESS-S1 and ACCESS-S2 comparison, there are 
some minor differences in the ACC values for SST (Figure 6f), although the differences are typically much smaller 
than the result for OHC-300 (Figure 4f). The RMSE global-average difference for ACCESS-S is also small at this 
lead (Figure 7f). We note again though that there are other differences between the ACCESS-S models besides 
whether or not they use altimetry assimilation, which manifests in the ACC and RMSE differences that are 
evident at particular locations such as in the Southern Ocean. Most importantly, the SEAS5-Experiment shows 
no sensitivity of the lead-0 month SST to inclusion of altimetry assimilation (Figures 6e and 7e).

The SST lead-3  month forecasts also do not show an overall improvement by using altimetry assimilation 
(Figures 6g–6l and 7g–7l). In the comparisons of both the SEAS5-Experiment and ACCESS-S models, the ACC 
differences for SST at the lead-3 month are as likely to be either positive or negative (i.e., the global averages 
are near zero), and there is limited regional coherence to the differences. The RMSE global-average difference 
is also close to zero for the SEAS5-Experiment (Figure  7k), although this error metric does suggest that the 
ACCESS-S1 forecast skill for SST is worse than ACCESS-S2 overall (Figure 7l). The positive RMSE difference 
in the ACCESS-S comparison consists of an error in the Southern Ocean persisting since the lead-0 month as 
well as an error appearing in the equatorial central Pacific by the lead-3 month. A limitation of our assessment is 
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Figure 6. Similar to Figure 4 but for the SST forecast skill measured by the ACC between satellite-based observations of SST and the forecasts at lead-0 and 3 months 
(a–d and g–j, respectively), as well as their respective differences (e–f and k–l).
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Figure 7. Similar to Figure 5 but for the SST forecast skill measured by the RMSE between satellite-based observations of SST and the forecasts at lead-0 and 
3 months (a–d and g–j, respectively), as well as their respective differences (e–f and k–l). Black contours indicate the observed standard deviation of SST (0.5°C 
interval).
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stopping at the lead-3 month, as this prevents us from assessing if the models with improved ocean physics early on 
(i.e., as inferred from the higher ACC and lower RMSE for OHC-300; Figures 4 and 5, respectively) have higher 
SST forecast skill at some much longer lead time (e.g., seasonal-to-decadal forecasts; see discussion in Section 4).

3.2.3. SSH

Results of the SSH forecast skill assessment (Figures 8 and 9) are mostly similar to what we showed for OHC-300, 
which is not surprising considering the strong physical relationship between the two variables (Figure 1a). Our 
hypothesis is that using altimetry assimilation will improve the SSH forecast if, and only if, the ocean density 
structure is improved; since we expect SSH monthly anomalies to respond to buoyancy variability via primarily 
a thermosteric sea level response (e.g., Widlansky et al., 2020). We already showed that the OHC-300 forecast 
skill is generally improved (i.e., higher ACC and lower RMSE) in the models including such initial information 
about the subsurface ocean from the assimilation of altimetry (Figures 4 and 5), and so the expectation is that 
these same models will better predict SSH. Despite this seemingly obvious result, an advantage of specifically 
assessing the SSH forecast skill is that the observations for SSH verification are completely independent of the 
models (unlike our choice of OHC-300 data from the multi-model reanalysis). Independent SSH observations 
for forecast verification allows fairer cross-model comparisons to be made (e.g., considering differences between 
the SEAS5-Control and ACCESS-S1), which we will also assess here in addition to the same-model differences.

For SSH at lead-0 month, ACCESS-S1 has a much higher global-average ACC value (Figure 8b; 0.66) compared 
to the SEAS5-Control (Figure  8a; 0.56), despite both models assimilating altimetry. A similar comparison 
between these two models was previously noted by Long et  al.  (2021). Interestingly, the RMSE for SSH of 
SEAS5 is somewhat lower than ACCESS-S1 (Figures  9a and  9b), with much of the difference being in the 
Southern Ocean. The SEAS5 and ACCESS-S1 forecast systems share many similarities in addition to both assim-
ilating altimetry (e.g., both ocean model components have similar 0.25° nominal resolutions), although the way 
of assimilating altimetry is different between them: in SEAS5, the altimeter observations are not assimilated pole-
ward of 50°N/S and are given lesser weight overall (Zuo et al., 2019), compared to ACCESS-S1. This difference 
in usage of altimetry data during the assimilation process may explain the difference in ACC at the lead-0 month 
(see discussion in Section 4). Interestingly, in the comparison of the two models without altimetry assimilation, 
the SEAS5-Experiment has slightly higher ACC overall compared to ACCESS-S2 (Figures  8c and  8d; 0.51 
vs. 0.45, respectively) and the global-average RMSE is lower in the former model (Figures 9c and 9d; 5.12 vs. 
6.11 cm). Although altimetry assimilation has a much smaller effect in SEAS5 than in the ACCESS-S systems 
(Figures 8e and 8f and 9e,f), in both cases the forecast skill at lead-0 month of SSH in the subtropics is clearly 
higher if altimetry assimilation is used in the initialization. We continue to note that ACCESS-S2 employs a 
different data assimilation system than what was used in ACCESS-S1; hence, this comparison on its own is 
inconclusive as far as hypothesis testing.

At the lead-3 month forecast for SSH (Figures 8g–8l), the models including altimetry assimilation continue to have 
somewhat higher ACC values overall (i.e., global-average differences of 0.03 and 0.04 for SEAS5 and ACCESS-S, 
respectively). These ACC differences (Figures 8k and 8l) are smaller compared to at the lead-0 month. Also, there 
is less of a difference between SEAS5 and ACCESS-S forecast skill at the lead-3 month, regardless of whether or 
not altimetry assimilation was used. At this lead, we see that ACCESS-S1 shows no advantage for higher forecast 
skill compared to the SEAS5-Control (Figures 8g and 8h), which was noted by Long et al. (2021). Here, we also 
compare the SEAS5-Experiment with ACCESS-S2 and see that the former has a minor forecast skill advantage 
(Figures 8i and 8j; ACC global averages are 0.37 vs. 0.31, respectively). Regardless of these cross-model differ-
ences, we see that the models including altimetry assimilation tend to have the highest ACC values in most places, 
which is especially the case outside of the tropical regions where the forecast skill in ACCESS-S1 appears to 
be less than in ACCESS-S2 (Figures 8h, 8j, and 8l). The RMSE analysis of the lead-3 month forecast for SSH 
(Figures 9g–9l) provides a similar result, although skill in the Southern Ocean again appears to be substantially 
degraded in ACCESS-S1.

3.3. Global and Regional Summary of Forecast Skill Changes

We now consider the ACC values for each ocean grid point within the near-global domain (i.e., everywhere 
within 60°N/S). Figure 10 presents a sample of these values as a function of whether or not altimetry assimilation 
is included in the models, and allows for direct comparison of the OHC-300, SST, and SSH results for the two 
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Figure 8. Similar to Figures 4 and 6 but for the SSH forecast skill measured by the ACC between altimetry observations of SSH with the forecasts at lead-0 and 
3 months (a–d and g–j, respectively), as well as their respective differences (e–f and k–l).
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Figure 9. Similar to Figures 5 and 7 but for the SSH forecast skill measured by the RMSE between altimetry observations of SSH and the forecasts at lead-0 and 
3 months (a–d and g–j, respectively), as well as their respective differences (e–f and k–l). Black contours indicate the observed standard deviation of SSH (5 cm 
interval).



Journal of Geophysical Research: Oceans

WIDLANSKY ET AL.

10.1029/2022JC019342

17 of 25

lead times that we assessed. By presenting the ACC values for the experiment models with no altimetry assim-
ilation (y-axes in Figure 10) as a function of the control models (i.e., with altimetry assimilation; x-axes), we 
see a clear tendency for the OHC-300 and SSH forecasts initialized using altimetry assimilation to have higher 
skill since there are more points below each of the diagonal lines (see percentage values in Figures 10a, 10b, 
10e, and 10f legends). In contrast, the SST forecasts show no tendency for differing skill depending on inclusion 

Figure 10. Global interpretation of forecast skill. ACC values calculated at a random 10% of grid cells (60°S–60°N) are 
shown for OHC-300 (a and b), SST (c and d), and SSH (e and f). Percentages of total grid points (n = 43,200) are shown 
for forecasts at lead-0 (orange) and 3 (blue) months where the ACC for the SEAS5-Control or ACCESS-S1 (altimetry 
assimilated, x-axes) are, respectively, higher than the SEAS5-Experiment or ACCESS-S2 (no altimetry assimilated, y-axes).
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of altimetry assimilation in the models (Figures 10c and 10d). Quantifying the effect of altimetry assimilation 
in this manner shows how strikingly similar the results are for OHC-300 and SSH. In fact, the only situation 
where the percentages are different between the OHC-300 and SSH variables by more than 1% is for the SEAS5 
lead-0 month (Figures 10a and 10e).

Figure 10 also shows that there is consistency between the SEAS5 and ACCESS-S models as far as the number 
of grid cells where altimetry assimilation is associated with higher ACC values for the OHC-300 and SSH fore-
casts. The cross-model consistency for the OHC-300 and SSH variables is greater for the lead-3 month forecast 
(percentages are within 1%; Figures 10a, 10b, 10e, and 10f) compared to at the lead-0 month (percentages differ 
between the SEAS5 and ACCESS-S models by 4% and 8% for OHC-300 and SSH, respectively). At least initially 
in the models, including altimetry assimilation seems to have a larger effect on ACCESS-S1 compared to SEAS5, 
which is also evident in the spatial ACC maps (Figures 4 and 8). Whereas, by lead-3 month the results are much 
more consistent across models. At the longer lead time, approximately 6%–8% of the globe has higher forecasting 
skill for OHC-300 and SSH in the two models that use altimetry assimilation. For the SST forecasts, the SEAS5 
and ACCESS-S models are likewise consistent, although the result for this variable is that there is minimal sensi-
tivity to altimetry assimilation (Figures 10c and 10d).

Figure 11 shows the ACC differences (i.e., SEAS5-Control minus SEAS5-Experiment and ACCESS-S1 minus 
ACCESS-S2) for the lead-0 and 3 month forecasts (x- and y-axes, respectively). The results are composited glob-
ally and also shown for five regions (i.e., as specified by the latitudinal bands in the legend). Compared to some 
of the regional composites, the global density distribution of ACC differences is centered fairly close to zero (see 
the shaded contours in Figure 11). However, the tails of the density distributions clearly extend toward positive 
ACC differences, at least for OHC-300 and SSH. Also, the lead-0 month differences are usually larger than for 
the lead-3 month (i.e., the maximum densities of the ACC differences are below the diagonal lines in Figures 11a, 
11b, 11e, and 11f). Both of these characteristics about the OHC-300 and SSH density distributions are to be 
expected given the spatial maps in Figures 4 and 8. For the SST forecasts, neither the ACC maps (Figure 6) nor 
the presentation in Figures 11c and 11d suggest that altimetry assimilation has much of an effect on skill, except 
that the ACCESS-S1 model at lead-0 month does have somewhat higher skill in the subtropics compared to 
ACCESS-S2. Lastly, and likewise to be expected based on the other results, the global density distributions of the 
differences between ACCESS-S1 and ACCESS-S2 are shifted further toward positive values compared to those 
in the SEAS5 experiment.

As we saw in the ACC maps for OHC-300 and SSH (Figures 4 and 8), nearly all of the improved forecast skill 
associated with altimetry assimilation occurs in the subtropics. The regionally composited results represented 
by colored dots in Figures 11a, 11b, 11e, and 11f are similar (i.e., the largest changes are in the subtropics). It 
is in the subtropics that we previously noticed the models using altimetry assimilation usually had the greater 
ACC between SSH and OHC-300 at the lead-0 month (Figure 3) as well as the greater lead-3 month forecasting 
skill for both variables (Figures 4 and 8). Figure 11 also shows that the mid-latitude average ACC difference 
at lead-0 month is clearly positive for ACCESS-S1 minus ACCESS-S2. For the lead-3 month comparison of 
ACCESS-S, and the SEAS5-Experiment at both leads, the mid-latitude differences are typically smaller. In the 
tropics, the ACC differences are starkly different from the other regions in that the values are either near zero 
(SEAS5 experiment for both leads) or negative (ACCESS-S1 minus ACCESS-S2 for the lead-3 month fore-
cast). To summarize briefly, whereas globally the overwhelming majority of ACC differences for OHC-300 and 
SSH are positive for the models that include altimetry assimilation, and the differences are clearly largest in the 
subtropical regions, these same models show no improvement of ocean seasonal forecast skill in the tropics.

4. Summary and Discussion
This study quantified the effect on ocean prediction skill of assimilating satellite-altimetry measurements of SSH 
in two operational climate forecasting systems (SEAS5 and ACCESS-S). We assessed a pair of retrospective 
forecasts from both SEAS5 and ACCESS-S, which either used altimetry assimilation or did not. Combined, the 
different assimilation treatments in these four models provide a set of forecasts that are well targeted for deter-
mining the importance of including altimetry assimilation in climate forecasting systems.

The forecast skill assessment focused on the variability of upper-ocean physical properties, which we described 
using monthly anomalies of OHC-300, SST, and SSH. Of these variables, OHC-300 is the most uncertain because 
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direct observations of the subsurface temperature do not exist uniformly over the near-global domain. Such obser-
vational gaps are typically filled using either objective interpolation of in-situ measurements, or dynamical anal-
yses that are initialized after assimilation of the best available data to describe the ocean state. Overall, we found 
that the latter method produces OHC-300 monthly anomalies that are more consistent with the expected physics 

Figure 11. Regional interpretation of forecast skill. ACC differences for SEAS5-Control minus SEAS5-Experiment and 
ACCESS-S1 minus ACCESS-S2 are shown for OHC-300 (a and b), SST (c and d), and SSH (e and f) at lead-0 and 3 months 
(x and y axes, respectively). Regional ACC averages (circles; see latitude domains in legend of panel (a) are compared to the 
global ACC differences using kernel density estimates of the results shown in Figures 4, 6 and 8 (non-uniform gray scale; see 
color bar in panel (a).
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(i.e., having the highest correlation with the closely-related and satellite-observed SSH variable; Figure 1). The 
strong correlation between OHC-300 and SSH is especially true for the multi-model reanalysis (GREP), which 
we chose for verifying the OHC-300 forecasts. We showed that OHC-300 and SST are also positively correlated 
in most places (Figure 2), which supports the expectation that all three of these variables are physically related 
to some extent.

The main result of this study is that including altimetry assimilation in the climate forecasting systems is asso-
ciated with an improvement of the subsurface ocean initial conditions and also higher prediction skill at the 
lead-3 month. We found this result to be generally the case for OHC-300 and SSH, but not SST. Our hypothesis 
that including altimetry assimilation is conducive to having a more realistic ocean initial state is supported by 
Figure 3, which shows that during the lead-0 month the ACC between observed SSH and the simulated OHC-300 
is higher in the models with altimetry assimilation (i.e., closer to what is expected to be the case based on the 
NEMO model realization shown in Figure 1a). The improvement (i.e., higher ACC values associated with altime-
try assimilation) is clear in the subtropics and some mid-latitude locations, whereas there appears to be little or no 
effect near the equator. For the equatorial Pacific, in particular, Zuo et al. (2017) showed that SSH and OHC-300 
variability are well simulated by the NEMO model because of its initialization with data from a robust network 
of in-situ observations along with forcing by the ERA-Interim atmospheric fluxes.

Likewise, our quantification of the effect of altimetry assimilation on forecasting skill (Figures 4–11) showed that 
the largest improvements (i.e., higher ACC and lower RMSE values for the verifications of OHC-300 and SSH 
with the reanalysis or satellite observations, respectively) are generally in these same regions (i.e., larger changes 
in the subtropics and mid-latitudes compared to the tropics). These results mostly support the second part of our 
hypothesis that improvements to the ocean initial conditions are associated with better forecast skill (i.e., higher 
ACC and lower RMSE values). In the tropics, we found either no difference in retrospective forecast skill between 
assimilation systems, or perhaps a slight worsening of the predictions when altimetry assimilation was included 
(e.g., ACCESS-S1 in the equatorial regions for all three variables at all leads as well as SEAS5-Control but only 
in the equatorial Atlantic for OHC-300 and SST at the lead-3 month). Reasons for apparent worsening forecast 
skill in the equatorial Atlantic are unknown, however a possibility is that the local balance between salinity and 
temperature nudging during the altimetry assimilation may need to be adjusted. In contrast to the forecasting 
improvements noted for OHC-300 and SSH outside of the tropics, assessment of the SST forecasts showed no 
widespread sensitivity to whether or not altimetry assimilation was used. The limited effect of altimetry assimila-
tion on the SST, especially for the lead-0 month of SEAS5 (Figures 6e and 7e), perhaps somewhat contradicts the 
previous finding of M. A. Balmaseda and Anderson (2009), but our result is not unexpected considering how well 
SST is observed and assimilated into current-generation climate forecasting models (e.g., McAdam et al., 2022). 
Collectively, the results of this study support our expectation that altimetry assimilation mostly improves the 
temperature and density structure of the subsurface ocean, which would more strongly affect OHC-300 and SSH 
compared to SST.

We address a specific limitation about our study, which is the focus on only the lead-0 and 3 months, prior to 
suggesting opportunities for further research. The focus on these early-month lead times is primarily because 
of the limited lead time for the retrospective forecasts from some of the models (i.e., out to lead-5 months for 
ACCESS-S and the SEAS5-Experiment). We assessed the ACC differences at every available lead time and 
generally found that the effect of including altimetry assimilation decreased at the longer leads compared to at 
the lead-0 month (Figure 12; RMSE differences decrease similarly to the ACC result and are not shown), which 
was expected because seasonal forecast skill typically decreases toward zero with increasing lead time (e.g., 
Jacox et al., 2022). For where there are the largest responses to including altimetry assimilation (i.e., OHC-300 
and SSH in the subtropics), we note that most of the decay with increasing lead time occurs between 0 and 
3 months. However, it is perceivable that longer retrospective forecasts (i.e., beyond lead-6 months) reveal a 
stronger effect of including altimetry assimilation on the SST forecast skill in particular, since subsurface anom-
alies sometimes take many months before influencing the surface (e.g., Deser et al., 2003). Hence, it would be 
interesting to assess the effect of altimetry assimilation on climate forecasts at much longer timescales (e.g., 
interannual to multi-decadal), but this would require substantially longer retrospective forecasts using each of the 
models. Considering any seasonal dependency of the response to altimetry assimilation would also be interesting, 
however this too would require more retrospective forecasts to have a sufficient degree of freedom necessary 
to minimize random noise (i.e., a longer forecasting epoch would be needed, which is feasible now that about 
30 years of altimetry observations exist).
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In the remainder of this section, we discuss three specific research questions motivated by assessment of the 
effect of altimetry assimilation on initializing and forecasting the upper-ocean monthly variability in climate 
models. The first question concerns why the climate models assimilating altimetry seem to produce a more real-
istic analysis of OHC-300 in most but not all places, compared to the objective analyses. The second question 
specifically relates to the forecast skill differences in the tropics between ACCESS-S1 and ACCESS-S2 (i.e., are 
there reasons besides not including altimetry assimilation in the latter model that explains the improvement in 
some equatorial regions?). The third question, which is motivated by all of these regional as well as inter-model 
differences in the results, asks how could the altimetry assimilation procedure be improved. Collectively, we think 
that answers to these questions may lead toward improved ocean seasonal forecasting capabilities and associated 
applications. We will conclude the discussion by mentioning immediate implications of this study.

There are presumably two reasons why the climate model analyses (GREP and ORAS5) have a more realistic 
OHC-300 compared to the objective analyses (IAP and EN4), which we saw is the case outside of the trop-
ics at least for the assumption of the NEMO model having the most realistic association between SSH and 

Figure 12. Similar to Figure 11 but for the regional ACC differences (y axes) as a function of lead month (x axes). Results for SEAS5-Control minus 
SEAS5-Experiment and ACCESS-S1 minus ACCESS-S2 are shown for OHC-300 (a and b, SST (c and d), and SSH (e and f).
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OHC-300 (Figure 1). First, GREP and ORAS5 both assimilate altimetry, which is an additional source of obser-
vations not used by IAP or EN4, and Figure 3 shows that the forecast models without altimetry assimilation 
do have a less realistic OHC-300 as represented by the reduction of ACC of that variable with the observed 
SSH. Second, the climate models, by design, dynamically merge all available observations (i.e., of temperature, 
circulation, and salinity) into a physically-consistent simulation of the ocean, which is an advantage that the 
observation-only analyses of OHC-300 lack. Regardless of including altimetry assimilation, the climate models 
are likely to produce improvements in the OHC-300 patterns associated with variations in the large-scale ocean 
circulation (e.g., associated with ENSO or the Atlantic Meridional Overturning Circulation, AMOC). However, 
climate models can also introduce errors, as we saw in parts of the tropics in ACCESS-S1 (Figures 4–8) as well 
as ORAS5 in the North Atlantic Subpolar Gyre (Figure 1c). In SEAS5, the relatively weak correlation in the 
North Atlantic between simulated OHC-300 and observed SSH is evident whether or not altimetry assimilation 
is used (Figures 3a and 3c). Interestingly, OHC-300 from the GREP multi-model reanalysis does not appear to 
have such a diminished ACC with observed SSH in the North Atlantic, or anywhere else equatorward of 60°N/S 
(Figure 1b). In fact, the degradation in ORAS5 (and SEAS5) in the North Atlantic has been reported (Tietsche 
et al., 2020), and this issue has been corrected in the new ECMWF ocean reanalysis system (ORAP6; see Zuo 
et al., 2021).

In spite of not including altimetry assimilation, ACCESS-S2 has somewhat higher forecast skill in the tropics 
compared to ACCESS-S1, whereas we showed that the opposite is true almost everywhere else. Recently, Wedd 
et  al.  (2022) assessed in detail the data assimilation procedures of the two ACCESS-S forecasting systems, 
and a brief review of that study is helpful to answer why we see these regional differences. They similarly 
found that ACCESS-S2 outperforms ACCESS-S1 near the equator, whereas ACCESS-S1 does better in the 
subtropics and mid-latitudes. Wedd et al. (2022) identified spurious upward velocities in the deep ocean of the 
ACCESS-S1 reanalysis, which they suggest results from a dynamical imbalance during the data assimilation. 
It remains unknown how directly the altimetry assimilation is involved with this error. ACCESS-S2 seems to 
perform better in the equatorial oceans due to more dynamically consistent increments of the data assimilation 
procedure. Wedd et al.  (2022) also found that a better ENSO prediction skill was achieved with ACCESS-S2 
compared to ACCESS-S1. Although we did not find significant differences in the SST forecast skill for the 
equatorial Pacific according to the ACC metric (Figure  6), the RMSE for ACCESS-S2 is lower there at the 
lead-3 month (Figure 7l). Also, the OHC-300 and SSH results for the lead-3 month (Figures 4 and 8, respectively) 
do show ACCESS-S2 having slightly higher ACC values in the off-equatorial eastern Pacific, which is consistent 
with that model perhaps having improved ENSO prediction capability.

It has been determined that the ACCESS-S1 data assimilation system does in fact have a deficiency, mainly due to 
spurious vertical velocity fields near the equator caused by dynamical imbalance after data assimilation. According to 
Wedd et al. (2022), such imbalance can degrade the performance of the ocean model and lead to unrealistic subsurface 
temperature and current fields, as seen in previous studies by Gasparin et al. (2021), Park et al. (2018), and Waters 
et al. (2016). The problem of dynamical imbalance is one of the unsolved challenges in ocean reanalyses, as noted by 
Storto, Alvera-Azcárate, et al. (2019). However, the more dynamically consistent initial conditions of ACCESS-S2 
have been found to perform better than ACCESS-S1 in the equatorial oceans, as reported by Wedd et al. (2022).

Based on the regional and inter-model differences that we identified in how altimetry assimilation seems 
to affect the subsurface ocean, we lastly ask if the altimetry assimilation procedure can be improved. At the 
lead-0 month, there is clearly an overall higher ACC of the SSH from ACCESS-S1 with observations compared 
to SEAS5 (Figures 8a and 8b) despite both models assimilating altimetry. Likewise, the difference at this lead 
between ACCESS-S1 and ACCESS-S2 is much larger than for the SEAS5-Experiment, both for SSH (Figures 8e 
and 8f) as well as OHC-300 (Figures 4e and 4f). These inter-model differences are largest at lead-0 month in the 
mid-latitudes and especially near the continental coasts (e.g., around North America) where altimetry observa-
tions are not weighted as heavily into the SEAS5 assimilation (Zuo et al., 2019). By the lead-3 month, we see no 
widespread differences between SEAS5 and ACCESS-S as far as how much altimetry assimilation is affecting 
the forecast skill, at least according to the ACC differences (Figures 4k and 4l and 8k and 8l). Interestingly, the 
RMSE assessment (Figures 5 and 9) mostly mirrors the ACC result, except that both ACCESS-S models have 
overall larger error amplitudes at all leads compared to SEAS5.

It remains unknown what is the ideal weighting to give altimetry observations in initializing climate forecasts, 
especially since suboptimal results are perceivable if the data assimilation is poorly performed. Besides poten-
tial errors near the equator in the ACCESS-S1 data assimilation noted above, there are many other challenging 
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regions in all current-generation climate models (e.g., around the Gulf Stream where ocean-atmosphere interac-
tions and horizontal mixing are important; respectively, Frankignoul et al., 2001; Wenegrat et al., 2020). In such 
places, weighting altimetry observations too heavily could perhaps worsen errors in the ocean or atmosphere, 
and actually degrade the seasonal forecasting skill. In fact, Long et al. (2021) found that the seasonal forecasting 
skill for SSH of ACCESS-S1 was no higher than SEAS5, despite the former model more closely matching the 
phase of observations initially (see also Figure 8). Targeted testing of different weighting procedures for altimetry 
assimilation are needed as a way forward to developing optimal forecasting systems.

To conclude, we showed that including altimetry assimilation in operational climate forecasting systems does 
appear to improve the overall ocean prediction skill at least for OHC-300 and SSH, and especially in the subtrop-
ics as well as parts of the mid-latitudes. In the tropics, for the models without altimetry assimilation, we did not 
find diminished forecast skill of any variable. This result may be important to consider in the context of choos-
ing which models are used for ENSO forecasting and making other predictions about the tropical ocean, such 
as producing sea level outlooks for the Pacific Islands (Widlansky et al., 2017) or early warnings about marine 
heatwaves (Jacox et al., 2022; C. M. Spillman & Smith, 2021; C.M. Spillman et al., 2021), in which it may be 
advantageous to include models regardless of whether altimetry assimilation is included. For the regions where 
we did find evidence of higher seasonal forecasting skill in the models that included altimetry assimilation, it 
remains to be determined whether such improvements are meaningful for seasonal forecasting applications. Such 
information is critical to support the development of next-generation forecasting systems (Becker et al., 2022) 
such as the forthcoming ACCESS-S3 from the Australian Bureau of Meteorology or the Unified Forecast System 
from NOAA. Sensitivity experiments using these new systems regarding altimetry assimilation are warranted.

Data Availability Statement
The ECMWF modeling data used in this study are available from https://uhslc.soest.hawaii.edu/opendap/Altim-
etryAssimilationExperiment/ (M. A. Balmaseda & Zuo,  2023). Retrospective forecasts from ACCESS-S are 
available from the Australian National Computing Infrastructure (NCI) by following the instructions for acquir-
ing research data at http://poama.bom.gov.au/general/hindcast_data.html (C. M. Spillman et al., 2023). The anal-
ysis and observation data used in this study are available from the following sources: GREP, https://resources.
marine.copernicus.eu/product-detail/GLOBAL_REANALYSIS_PHY_001_031 (Global Ocean Ensemble Phys-
ics Reanalysis, 2023); ORAS5, https://www.cen.uni-hamburg.de/icdc/data/ocean/easy-init-ocean/ecmwf-oras5.
html (Zuo & Balmaseda, 2023); EN4, https://www.metoffice.gov.uk/hadobs/en4/ (EN.4.2.2, 2023); IAP, http://
www.ocean.iap.ac.cn/ftp/cheng/IAP_Ocean_heat_content_0_2000m/ (IAP Ocean Heat Content,  2023); SST, 
https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.html (NOAA Optimum Interpolation (OI) SST V2, 2023); 
and SSH, https://resources.marine.copernicus.eu/product-detail/SEALEVEL_GLO_PHY_L4_MY_008_047/
INFORMATION (Global Ocean Gridded L 4 Sea Surface Heights And Derived Variables Reprocessed, 1993 
Ongoing, 2023).
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